Индуктивное сопротивление колебательного контура. Колебательный контур LC. Основные свойства индуктивности

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Колебательный контур: принцип работы, виды контуров, параметры и характеристики

Не затухающие колебания.

Принцип действия колебательного контура

Заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности. Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Собственная частота колебательного контура

Частота свободных колебаний тока и напряжения, возникающих в колебательном контуре.

T = 2*п*(L*C)1/2. T - период электромагнитных колебаний, L и C - соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура, п - число пи.

Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Такие устройства называются автоколебательными системами.

Любая автоколебательная система состоит из следующих четырех частей

1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан - некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь - управление работой клапана за счет процессов в самой колебательной системе.

Генератор на транзисторе - пример автоколебательной системы. На рисунке ниже приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.

При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды.

Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю.

Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура - это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре - это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы - напряжением источника, расстоянием между Lсв и L, сопротивлением контура.

Основным устройством, определяющим рабочую частоту любого генератора переменного тока, является колебательный контур. Колебательный контур (рис.1) состоит из катушки индуктивности L (рассмотрим идеальный случай, когда катушка не обладает омическим сопротивлением) и конденсатора C и называется замкнутым. Характеристикой катушки является индуктивность, она обозначается L и измеряется в Генри (Гн), конденсатор характеризуют емкостью C , которую измеряют в фарадах (Ф).

Пусть в начальный момент времени конденсатор заряжен так (рис.1), что на одной из его обкладок имеется заряд +Q 0 , а на другой - заряд -Q 0 . При этом между пластинами конденсатора образуется электрическое поле, обладающее энергией

где - амплитудное (максимальное) напряжение или разность потенциалов на обкладках конденсатора.

После замыкания контура конденсатор начинает разряжаться и по цепи пойдет электрический ток (рис.2), величина которого увеличивается от нуля до максимального значения . Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС самоиндукции, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В каждый момент времени разность потенциалов на обкладках конденсатора

(где - заряд конденсатора в данный момент времени) равна разности потенциалов на катушке, т.е. равна ЭДС самоиндукции

Рис.1 Рис.2

Когда конденсатор полностью разрядится и , сила тока в катушке достигнет максимального значения (рис.3). Индукция магнитного поля катушки в этот момент также максимальна, а энергия магнитного поля будет равна

Затем сила тока начинает уменьшаться, а заряд будет накапливаться на пластинах конденсатора (рис.4). Когда сила тока уменьшится до нуля, заряд конденсатора достигнет максимального значения Q 0 , но обкладка, прежде заряженная положительно, теперь будет заряжена отрицательно (рис. 5). Затем конденсатор вновь начинает разряжаться, причем ток в цепи потечет в противоположном направлении.

Так процесс перетекания заряда с одной обкладки конденсатора на другую через катушку индуктивности повторяется снова и снова. Говорят, что в контуре происходят электромагнитные колебания . Этот процесс связан не только с колебаниями величины заряда и напряжения на конденсаторе, силы тока в катушке, но и перекачкой энергии из электрического поля в магнитное и обратно.

Рис.3 Рис.4

Перезарядка конденсатора до максимального напряжения произойдет только в том случае, когда в колебательном контуре нет потерь энергии. Такой контур называется идеальным.


В реальных контурах имеют место следующие потери энергии:

1) тепловые потери, т.к. R ¹ 0;

2) потери в диэлектрике конденсатора;

3) гистерезисные потери в сердечнике катушке;

4) потери на излучение и др. Если пренебречь этими потерями энергии, то можно написать, что , т.е.

Колебания, происходящие в идеальном колебательном контуре, в котором выполняется это условие, называются свободными , или собственными , колебаниями контура.

В этом случае напряжение U (и заряд Q ) на конденсаторе изменяется по гармоническому закону:

где n - собственная частота колебательного контура, w 0 = 2pn - собственная (круговая) частота колебательного контура. Частота электромагнитных колебаний в контуре определяется как

Период T - время, в течение которого совершается одно полное колебание напряжения на конденсаторе и тока в контуре, определяется формулой Томсона

Сила тока в контуре также изменяется по гармоническому закону, но отстает от напряжения по фазе на . Поэтому зависимость силы тока в цепи от времени будет иметь вид

. (9)

На рис.6 представлены графики изменения напряжения U на конденсаторе и тока I в катушке для идеального колебательного контура.

В реальном контуре энергия с каждым колебанием будет убывать. Амплитуды напряжения на конденсаторе и тока в контуре будут убывать, такие колебания называются затухающими. В задающих генераторах их применять нельзя, т.к. прибор будет работать в лучшем случае в импульсном режиме.

Рис.5 Рис.6

Для получения незатухающих колебаний необходимо компенсировать потери энергии при самых разнообразных рабочих частотах приборов, в том числе и применяемых в медицине.

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка "Массовой радиобиблиотеки" изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Основные зависимости

В практике расчетов избирательных систем на колебательных контурах для их расчетов используются L, C, R пот и определяемая ими f рез колебательного контура .

f рез = 1/ 2π (L C) 1/2

Производные от них Q - добротность резонансной цепи определяющая ее резонансные свойства, такие, как полоса пропускания Δf .

Δf = Q f рез

R ое (сопротивление потерь) (R рез в других источниках) определяющие свойства параллельного колебательного контура как нагрузки или источника сигнала.

R ое = 6,28 f L Q = 159 10 3 Q / f C (1);

Сопротивление потерь для последовательного колебательного контура ,

r ое = 6,28 f L / Q = 159 10 3 / C Q (2);

W или ρ - волновое сопротивление контура, которое необходимо знать при использовании колебательного контура в сложных избирательных системах.

ρ = (L/C) 1/2 ;

Добротность колебательных контуров определяется добротностью индуктивности.
Реально добротность колебательного контура ниже чем расчетная это вызкано шунтированием контура входным или выходным сопротивлением усилительных устройств.
Для снижения добротности (получение заданной добротности) и получения широкой (заданной) полосы пропускания применяется искусственное шунтирование параллельного колебательного контура. Для этого параллельно Rое включается внешнее сопротивление Rш, в результате эквивалентная добротность определяется

Rэ = Rое || Rш.

R ое э = 6,28 f L Q э = 159 10 3 Q э / f C (3)

В формулах 1, 2 и 3 используют Rое - в КОм, f - в кгц, L - в мкГн, C - в пф. в остальных генри, фарады, омы, герцы.

Последовательный колебательный контур

В сопротивлении R пос считают сосредоточенными все потери колебательного контура. Поэтому в последовательном колебательном контуре потери тем меньше, чем меньше величина R пос , от этого зависит и величина тока, проходящего через колебательный контур в момент резонанса. Модуль сопротивления последовательного колебательного контура (при переменном токе) вычисляется по формуле: Фазовый угол зависит : При резонансе (ω 0 ) оба реактивных сопротивления одинаковы по модулю и взаимно уничтожаются, таким образом, сопротивление контура равно сопротивлению потерь (активному сопротивлению): Резонансную частоту f 0 рассчитывают по следующим формулам: где:

L - индуктивность, гн,

С - емкость, ф;

где:

L - индуктивность, мгн,

С - емкость, пф;

где:

L - индуктивность, мкгн,

С - емкость, пф.
Ток в последовательном резонансном контуре

Из многих возможных применений последовательного колебательного контура, укажем на его использование в качестве отсасывающей цепи в антенном входе супергетеродинного приемника.
В этом случае резонансная частота должна быть равна промежуточной частоте. Последовательный колебательный контур часто применяется при измерении добротности катушек индуктивности (рис. 43). Для этого при неизменном входном напряжении измеряют резонансное напряжение на конденсаторе переменной емкости. Добротность катушки определяется по формуле
Измерение ширины полосы (рис. 50), о котором упоминалось выше, позволяет определить общие потери колебательного контурам где:

b - абсолютная полоса пропускания, заключенная между двумя точками резонансной кривой, взятыми на уровне 0,707 от максимальной амплитуды.

d - потери колебательного контура,

При резонансной частоте f 0

где: d = d L + d c .
На частотах, отличающихся от резонансной, справедливы следующие формулы:
где:

L - индуктивность, гн;

С - емкость, ф.

Параллельный колебательный контур

В параллельном колебательном контуре индуктивность L , емкость С и сопротивление потерь R пар соединены параллельно (рис. 51).
Такой колебательный контур получил очень широкое распространение в радиотехнике.

При расчете сопротивления параллельных колебательных контуров удобно исходить из величин проводимости, так как в этом случае задача сводится к сложению этих величин.
Величина полной проводимости цепи параллельного колебательного контура рассчитывается по формуле:

Так как R = 1/G, то

Фазовый угол:
На резонансной частоте (ω 0) оба реактивных сопротивления равны по модулю:
Следовательно, формулы для вычисления резонансной частоты одинаковы для параллельного и последовательного колебательных контуров.
В параллельном колебательном контуре токи в ветвях с реактивными сопротивлениями оказываются в Q раз больше, чем ток в общей ветви:
При настройке параллельного контура на резонансную частоту реактивные сопротивления взаимно уничтожаются, и на активном сопротивлении R пар происходит выделение резонансного напряжения. Это явление используется в приемниках и передатчиках.

Резонансное сопротивление параллельного колебательного контура

где:

R s - активное сопротивление потерь, ом;

L - индуктивность, гн;

С - емкость, ф.

Величина резонансного сопротивления зависит от добротности контура :

где:

d - коэффициент потерь контура.

Если, настроив контур в резонанс, изменить емкость С вблизи резонансной частоты так, чтобы напряжение на контуре составляло 0,707 от значения максимального напряжения, то резонансное сопротивление можно найти из выражения

где:

ΔС - изменение емкости, ф.

Ширина полосы пропускания параллельного колебательного контура

Если необходимо увеличить ширину полосы пропускания параллельного колебательного контура, то это можно сделать, зашунтировав контур активным сопротивлением. Величина шунта
где:

L - индуктивность, гн;

С - емкость, ф;

R s - последовательное сопротивление потерь, ом;

Rl - последовательное сопротивление потерь катушки, необходимое для получения требуемой полосы пропускания, ом

В случае использования нескольких колебательных контуров с одинаковой резонансной частотой, например в многоконтурных приемниках прямого усиления, ширина полосы пропускания уменьшается (по сравнению с полосой одиночного контура) В двухконтурном приемнике она составляет 0,642 b , а в трехконтурном - 0,51 b
Изменять частоту контура в пределах определенного диапазона можно посредством конденсатора переменной емкости.

Диапазон изменения емкости конденсатора:

C = C макс - C мин

где:

С макс - конечная емкость конденсатора, пф;

С мин - начальная емкость конденсатора, пф.

При расчете необходимо учитывать все остальные емкости, включенные параллельно, в том числе емкость подстроечного конденсатора С п , емкость монтажа С м и собственную емкость катушки индуктивности С к:

C пар = C п + C м + C к

С учетом емкости С пар величина изменения емкости колебательного контура

C = (C макс + C пар) - (C мин +C пар) = C кон - C нач;

C кон = C макс + C пар;

C нач = C мин + C пар.

где:

С нач - начальная емкость колебательного контура, пф;

С кон - конечная емкость колебательного контура, пф.

Коэффициент перекрытия диапазона, т. е. отношение минимальной частоты к максимальной частоте контура, определяется из формулы

Таким образом, чтобы получить, например, отношение частот 1: 3 , необходимо обеспечить отношение емкостей 1: 9 .

Необходимая параллельная индуктивность рассчитывается по формуле:

где:

f макс - максимальная частота, кгц;

С нач - начальная емкость, пф

При налаживании точная установка верхней границы диапазона производится подстроечным конденсатором при полностью выведенном конденсаторе переменной емкости.
Резонансное сопротивление параллельного колебательного контура, как правило, высокое. Если к контуру надо подключить сопротивление, величина которого невелика по сравнению с сопротивлением контура при резонансе, то необходимо подобрать соответствующий способ связи, так как иначе в контур будет внесено недопустимое затухание. Можно применить трансформаторную, автотрансформаторную и емкостную связь. Примерами могут служить индуктивная связь контура с антенной и подключение детектора к части катушки контура промежуточной частоты в супергетеродинном приемнике. На рис. 52 показан подобный случай подключения низкоомного сопротивления нагрузки R н к контуру посредством отвода. Преобразование сопротивлений происходит в соответствии с коэффициентом трансформации

Если Rн - омическое сопротивление, то результирующее сопротивление контура определяется по формуле
где R рез - резонансное сопротивление параллельного контура при отключенном сопротивлении .
Сопротивление
R рез и пересчитанное сопротивление нагрузки R н n 2 показаны на рис. 52 штриховыми линиями.
При рассмотрении цепи постоянного тока мы указывали, что генератор с внутренним сопротивлением R i отдает максимальную мощность сопротивлению нагрузки R н в том случае, если R i = R н.


Это положение остается в силе и для контуров связи оконечных каскадов передатчиков с антенной, где рассогласование может привести к перегрузке усилительного прибора (транзистора или лампы). Точно так же во избежание отражений кабель всегда нагружают на его волновое сопротивление.
На рис. 53 и 54 показаны схемы согласования с помощью Г-образного звена фильтра нижних частот., Конденсатор в цепи переменного тока, Индуктивность в цепи переменного тока, Мощность переменного тока

Основные зависимости, Последовательный колебательный контур, Параллельный колебательный контур

Входная цепь приемника

RC и LC фильтры - общие положения, RC фильтры, LC фильтры

Аттенюаторы, Согласование источника с нагрузкой по мощности, току и напряжению

Основные параметры передающих антенн, Параметры приемных антенн, Вибраторные антенны, Рамочные антенны, Приемные ферритовые антенны, Формулы для расчета вибраторных антенн

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ - Общие положения, ИОНОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН, Преломление и отражение радиоволн в ионосфере, Особенности распространения сверхдлинных и длинных волн, Особенности распространения средних волн, Особенности распространения коротких волн, РАСПРОСТРАНЕНИЕ УЛЬТРАКОРОТКИХ ВОЛН В ПРИЗЕМНОМ ПРОСТРАНСТВЕ, Распространения радиоволн над поверхностью земли, дальний прием

Для начинающих радиолюбителей хотелось бы привести немного информации о параметрах колебательных контуров. Ведь катушки индуктивности в основном являются их составной частью. Контур, как известно, состоит из катушки индуктивности и конденсатора. Рассмотрим параллельный контур, как наиболее часто встречающиийся.

Основными характеристиками контура являются:

  • Резонансная частота контура
  • Добротность контура
  • Эквивалентное сопротивление контура
  • Полоса пропускания

Резонансная частота контура определяется по формуле:

Где L и C в Генри и Фарадах соответственно.

Теоретически, все вышесказанное относится и к индуктивности L , однако в реальности, привнесенные в контур индуктивности на порядок меньше и их в большинстве случаев можно не учитывать.

Добротность "голого" ненагруженного контура Q определяется добротностями катушки Q L и конденсатора Q C . Q L зависит от сопротивления r L (см. рис1.), эквивалентного потерям электрической энергии в проводе, в изоляции провода, каркасе, экране, сердечнике катушки индуктивности. Q L = 2πƒL /r L . Обычно в зависимости от качества конструкции катушки индуктивности и применяемых материалов Q L ≈50÷250.

Добротность конденсатора Q C Зависит от сопротивления R C , эквивалентного потерям диалектической энергии в конденсаторе. Q C = 1/(2πƒСR C) . Обычно Q C ≈400÷1000.

Всевозможные сопротивления потерь (r L ,R C ) можно, для удобства расчетов заменить одним сопротивлением R э , подключенным параллельно идеальному контуру без потерь, которое называется эквивалентным сопротивлением контура. Оно характеризует все потери реального контура и равно сопротивлению контура на резонансной частоте. Попутно замечу, что на резонансной частоте реактивные сопротивления катушки и конденсатора равны и противоположны по знаку и компенсируют друг друга, в результате общее сопротивление контура чисто активно.
Величина R э связана с другими параметрами контура следующими соотношениями:
R э = 2πf 0 LQ = Q/(2πf 0 C) , f 0 – резонансная частота.

Здесь опять существует важный момент. При подключении к контуру внешних цепей параллельно R э подключаются дополнительные сопротивления, вносимые внешними цепями. При этом R э и Q уменьшаются. Причем для высокодобротных контуров, это уменьшение может быть существенным. Чтобы минимизировать влияние внешних цепей на контур, применяют частичное включение через емкостный делитель, отвод катушки, либо применяют катушку связи.

Полоса пропускания равна полосе частот, где коэффициент передачи контура равен 70,7% от коэффициента передачи на резонансной частоте.

Справедливо соотношение: Q = f/Δf , которое можно использовать для измерения добротности реального контура.

Подводя итог, отмечу, что колебательный контур широко используется в радиотехнических устройствах для фильтрации электрических колебаний, для поворота фазы, для согласования сопротивлений и для других целей. При расчете контура обязательно необходимо учитывать параметры внешних цепей, подключенных к контуру и качественные характеристики самих деталей контура, особенно катушки индуктивности .

Колебательный контур называется идеальным, если он состоит из катушки и емкости и в нем нет сопротивления потерь.

Рассмотрим физические процессы в следующей цепи:

1 Ключ стоит в положении 1. Конденсатор начинает заряжаться, от источника напряжения и в нем накапливается энергия электрического поля,

т.е.конденсатор становится источником электрической энергии.

2. Ключ в положении 2. Конденсатор начнет разряжаться. Электрическая энергия, запасенная в конденсаторе переходит в энергию магнитного поля катушки.

Ток в цепи достигает максимального значения(точка 1). Напряжение на обкладках конденсатора уменьшается до нуля.

В период от точки 1 до точки 2 ток в контуре уменьшается до нуля, но как только он начинает уменьшатся, то уменьшается магнитное поле катушки и в катушке индуцируется ЭДС самоиндукции, который противодействует уменьшению тока, поэтому он уменьшается до нуля не скачкообразно, а плавно. Так как возникает ЭДС самоиндукции, то катушка становится источником энергии. От этой ЭДС конденсатор начинает заряжаться, но с обратной полярностью (напряжение конденсатора отрицательное) (в точке 2 конденсатор вновь заряжается).

Вывод: в цепи LC происходит непрерывное колебание энергии между электрическим и магнитным полями, поэтому такая цепь называется колебательным контуром.

Получившиеся колебания называются свободными илисобственными , поскольку они происходят без помощи постороннего источника электрической энергии, внесенной ранее в контур (в электрическое поле конденсатора). Так как емкость и индуктивность идеальны (нет сопротивления потерь) и энергия из цепи не уходит, амплитуда колебаний с течением времени не меняется и колебания будут незатухающими .

Определим угловую частоту свободных колебаний:

Используем равенство энергий электрического и магнитного полей

Где ώ угловая частота свободных колебаний.

[ ώ ]=1/с

f 0= ώ /2π [Гц].

Период свободных колебаний Т0=1/f .

Частоту свободных колебаний называют частотой собственных колебаний контура.

Из выражения: ώ²LC=1 получимώL=1/Cώ , следовательно, при токе в контуре с частотой свободных колебаний индуктивное сопротивление равно емкостному сопротивлению.

Характеристические сопротивления.

Индуктивное или емкостное сопротивление в колебательном контуре при частоте свободных колебаний называется характеристическим сопротивлением.

Характеристическое сопротивление вычисляется по формулам:

5.2 Реальный колебательный контур

Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.

Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.

Рисунок - реальный колебательный контур.

Угловая частота свободных колебаний в реальном колебательном контуре:

Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.

Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.

В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.

Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.

На практике используют величину, обратную затуханию – добротность контура.

Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.

Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.

Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.

Задача: Определить индуктивность, угловую частоту контура, характеристическое сопротивление, если емкость колебательного контура 100 пФ, частота свободных колебаний 1,59 МГц.

Решение:

Тестовые задания:

Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ

Резонанс напряжений – явление возрастания напряжений на реактивных элементах, превышающих напряжение на зажимах цепи при максимальном токе в цепи, которое совпадает по фазе с входным напряжением.

Условия возникновения резонанса:

    Последовательное соединение LиCс генератором переменного тока;

    Частота генератора должна быть равна частоте собственных колебаний контура, при этом характеристические сопротивления равны;

    Сопротивление должно быть меньше, чем 2ρ, так как только в этом случае в цепи возникнут свободные колебания, поддерживаемые внешним источником.

Полное сопротивление цепи:

так как равны характеристические сопротивления. Следовательно, при резонансе цепь носит чисто активный характер, значит, входное напряжение, и ток в момент резонанса совпадают по фазе. Ток принимает максимальное значение.

При максимальном значении тока напряжение на участках L и C будут большими и равными между собой.

Напряжение на зажимах цепи:

Рассмотрим следующие соотношения:

, следовательно

Q добротность контура –при резонансе напряжения показывает, во сколько раз напряжение на реактивных элементах больше входного напряжения генератора, питающего цепь. При резонансе коэффициент передачи последовательного колебательного контура

резонанса.

Пример:

Uc=Ul=QU =100В,

то есть напряжение на зажимах меньше напряжений на емкости и индуктивности. Это явление называется резонансом напряжений

При резонансе, коэффициент передачи равен добротности.

Построим векторную диаграмму напряжения

Напряжение на емкости равно напряжению на индуктивности, следовательно напряжение на сопротивлении равно напряжению на зажимах и совпадает по фазе с током.

Рассмотрим энергетический процесс в колебательном контуре:

В цепи имеется обмен энергии между электрическим полем конденсатора и магнитным полем катушки. К генератору энергия катушки не возвращается. От генератора в цепь поступает такое количество энергии, которое тратится на резисторе. Это необходимо для того, чтобы в контуре наблюдались незатухающие колебания. Мощность в цепи только активная.

Докажем это математически:

, полная мощность цепи, которая равна активной мощности.

Реактивная мощность.

8.1 Резонансная частота. Расстройка.

Lώ=l/ώC , следовательно

, угловая резонансная частота.

Из формулы видно, что резонанс наступает, если частота питающего генератора равна собственным колебаниям контура.

При работе с колебательным контуром необходимо знать, совпадает ли частота генератора и частота собственных колебаний контура. Если частоты совпадают, то контур остается настроенным в резонанс, если не совпадает – то в контуреприсутствует расстройка.

Настроить колебательный контур в резонанс можно тремя способами:

1 Изменять частоту генератора, при значениях емкости и индуктивности const, то есть изменяя частоту генератора мы подстраиваем эту частоту под частоту колебательного контура

2 Изменять индуктивность катушки, при частоте питания и емкости const;

3 Изменять емкость конденсатора, при частоте питания и индуктивности const.

Во втором и третьем способе изменяя частоту собственных колебаний контура, подстраиваем ее под частоту генератора.

При ненастроенном контуре частота генератора и контура не равны, то есть присутствует расстройка.

Расстройка – отклонение частоты от резонансной частоты.

Существует три вида расстройки :

    Абсолютная – разность между данной частотой и резонансной

    Обобщенная – отношение реактивного сопротивления к активному:

    Относительная – отношение абсолютной расстройки к резонансной частоте:

При резонансе все расстройки равны нулю , если частота генератора меньше частоты контура, то расстройка считается отрицательной,

Если больше – положительной.

Таким образом добротность характеризует качество контура, а обобщенная расстройка- удаленность от резонансной частоты.

8.2 Построение зависимостейX , X L , X C отf .

Задачи:

    Сопротивление контура 15 Ом, индуктивность 636 мкГн, Емкость 600 пФ, напряжение питающей сети 1,8 В. Найти собственную частоту контура, затухание контура, характеристическое сопротивление, ток, активную мощность, добротность, напряжение на зажимах контура.

Решение:

    Напряжение на зажимах генератора 1 В, частота питающей сети 1 МГц, добротность 100, емкость 100 пФ. Найти: затухание, характеристическое сопротивление, активное сопротивление, индуктивность, частоту контура, ток, мощность, напряжения на емкости и индуктивности.

Решение:

Тестовые задания:

Тема занятия 9 : Входные и передаточные АЧХ и ФЧХ последовательного колебательного контура.

9.1 Входные АЧХ и ФЧХ.

В последовательном колебательном контуре:

R – активное сопротивление;

X – реактивное сопротивление.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Установить Adobe Flash Player последней версии Установить Adobe Flash Player последней версии Unlocker Если не удаляется файл Почему не удаляется файл Unlocker Если не удаляется файл Почему не удаляется файл Mysql мониторинг запросов Mysql мониторинг запросов